Magneto-Optics of Massive Dirac Fermions in BulkBi2Se3
نویسندگان
چکیده
منابع مشابه
Massive and massless Dirac fermions in Pb1−xSnxTe topological crystalline insulator probed by magneto-optical absorption
Dirac fermions in condensed matter physics hold great promise for novel fundamental physics, quantum devices and data storage applications. IV-VI semiconductors, in the inverted regime, have been recently shown to exhibit massless topological surface Dirac fermions protected by crystalline symmetry, as well as massive bulk Dirac fermions. Under a strong magnetic field (B), both surface and bulk...
متن کاملUltrafast dynamics of massive dirac fermions in bilayer graphene.
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by ...
متن کاملTriplet Fermions and Dirac Fermions in Borophene
Borophene is a monolayer materials made of boron. A perfect planar boropehene called β12 borophene has Dirac cones and they are well reproduced by a tight-binding model according to recent experimental and first-principles calculation results. We explicitly derive a Dirac theory for them. Dirac cones are gapless when the inversion symmetry exists, while they are gapped when it is broken. In add...
متن کاملFemtosecond spectrotemporal magneto-optics.
A new method to measure and analyze the time and spectrally resolved polarimetric response of magnetic materials is presented. It allows us to study the ultrafast magnetization dynamics of a CoPt3 ferromagnetic film. The analysis of the pump-induced rotation and ellipticity detected by a broad spectrum probe beam shows that magneto-optical signals predominantly reflect the spin dynamics in ferr...
متن کاملMagneto-optics of electronic transport in nanowires
Effects of irradiation on the electronic conductance in nanowires, for field-free conditions and under the influence of applied longitudinal magnetic fields, were investigated. The nanowires were modeled within the free-electron framework with a parabolic ~transverse! confining potential. Our results for the dependence of the photoconductance of irradiated nanowires on the photon energy and/or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2015
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.114.186401